Bondal-Orlov's reconstruction theorem in noncommutative projective geometry

Yuki Mizuno

Waseda University

July 5, 2025

Introduction: Reconstruction Problems

k: alg clo field.

Question

When can we renconstruct a scheme from its (derived) category of coherent sheaves ?

Theorem (Gabriel '62)

X, Y: noeth schs.

Then,

$$Coh(X) \simeq Coh(Y) \Rightarrow X \simeq Y$$
.

Theorem (Bondal-Orlov '01)

X, Y: sm proj vars over k.

Assume that the canonical bundles of X, Y are (anti-)ample.

Then,

$$D^b(\mathsf{Coh}(X)) \simeq D^b(\mathsf{Coh}(Y)) \Rightarrow X \simeq Y.$$

Introduction: motivation of NC Proj geometry

- $R = \bigoplus_{i \in \mathbb{N}} R_i$: commutative \mathbb{N} -gr k-alg
- gr(R): category of fin gen \mathbb{Z} -gr R-mods
- qgr(R) = gr(R)/tor(R): quotient category.
 - \triangleright obj(qgr(R)) = obj(gr(R)),
 - $\vdash \mathsf{Hom}_{\mathsf{qgr}(R)}(\pi_R(M), \pi_R(N)) = \varinjlim_{n} \mathsf{Hom}_{\mathsf{gr}(R)}(M_{\geq n}, N_{\geq n}).$
 - $(\pi_R:\operatorname{\sf gr}(R) \to \operatorname{\sf qgr}(R):\operatorname{\sf the projection})$

Theorem (Serre '55)

Assume that R is generated by R_1 as an R_0 -alg.

Then,

$$Coh(Proj(R)) \simeq qgr(R)$$
.

By [Serre '55] + [Gabriel '62], we can think that qgr(R) is essential in projective algebraic geometry!

Introduction: NC Proj Geometry

- $A = \bigoplus_{i \in \mathbb{N}} A_i$: locally fin noeth \mathbb{N} -gr k-alg.
- gr(A) : cat of fin gen \mathbb{Z} -gr right A-mods.
- qgr(A) = gr(A)/tor(A) : quotient cat.

Definition (Artin-Zhang '94)

We call

qgr(A) the noncommutative projective (NC) scheme associated with A.

Theorem (M, rough version)

Under appropriate conditions,

Bondal-Orlov's reconstruction theorem holds for NC proj schs.

Key notions

Canonical bundles, their (anti-)ampleness and dualizing complexes in NC world.

Canonical Bimodules in the Theory of Abelian Categories

 \mathcal{C} : k-linear abelian cat, $F:\mathcal{C}\to\mathcal{C}$: autoequiv.

Definition (Mori-Ueyama '21)

F is a canonical bimodule on C if $\exists n \in \mathbb{Z}$ s.t.

$$F[n]: D^b(\mathcal{C}) \to D^b(\mathcal{C})$$

is a Serre functor, i.e. $\operatorname{\mathsf{Hom}}_{D^b(\mathcal{C})}(M,N) \simeq \operatorname{\mathsf{Hom}}_{D^b(\mathcal{C})}(N,F[n](M))^\vee$.

E.g.

 $\overline{\omega_X}$: can sheaf of a proj var X.

- 1. $X : \operatorname{sm} \Rightarrow \otimes_{\mathcal{O}_X} \omega_X : \operatorname{can bimod on } \operatorname{Coh}(X) \& n = \dim(X)$.
- 2. X: Calabi-Yau (i.e. sm & $\omega_X \simeq \mathcal{O}_X$) $\Leftrightarrow \operatorname{id}_{\operatorname{Coh}(X)}$ is a can bimod of $\operatorname{Coh}(X)$.

Ampleness in the Theory of Abelian Categories

 \mathcal{O} : object in \mathcal{C} , $F:\mathcal{C}\to\mathcal{C}$: autoequiv.

Definition (Artin-Zhang '94)

A pair (\mathcal{O}, F) is ample if

- **1** $\forall M \in \mathcal{C}$, \exists an epimor $\varphi : \bigoplus_{i=1}^r F^{-\ell_i}(\mathcal{O}) \rightarrow M \quad (\ell_1, \dots, \ell_r \in \mathbb{N}).$
- 2 \forall epimor $f: M \to N, \forall m \gg 0$,

$$F^{-m}(\mathcal{O})$$

$$\exists g \qquad \qquad : \text{ commutative}$$

$$M \xrightarrow{f} N$$

A pair (\mathcal{O}, F) is anti-ample if (\mathcal{O}, F^{-1}) is ample.

E.g.

L: an invertible sheaf on a sm proj var X.

• L is ample on $X \Leftrightarrow (\mathcal{O}_X, - \otimes_{\mathcal{O}_X} L)$ is ample.

Dualizing Complexes of NC Graded Algebras

Definition (Yekutieli '92)

A dualizing complex (dc) of A is a cpx $R \in D^b(Gr(A^{en}))$ s.t.

- **1** R has fin inj dim & fin gen cohomology over $A \& A^{op}$,
- 2 The functor

$$\mathsf{R}\,\mathsf{Hom}_A(-,R):D^b(\mathsf{gr}(A)) o D^b(\mathsf{gr}(A^\mathsf{op}))$$

is an equiv with inverse **R** Hom_{A^{op}}(-, R).

Moreover, R is balanced if $\mathbf{R}\Gamma_{\mathfrak{m}_A}(R) \simeq \mathbf{R}\Gamma_{\mathfrak{m}_{A^{op}}}(R) \simeq A'$ (graded k-dual).

Rmk

A has a balanced dc & qgr(A) has a can bimod

$$\Rightarrow \pi_A(-\otimes_A H^{-(d+1)}(R))$$
: can bimod of $qgr(A)$ $(d = gl.dim(qgr(A)))$.

Main Theorem

A, B: loc fin noeth \mathbb{N} -gr k-algs w/ balanced dc R_A, R_B .

Theorem (M)

Assume that qgr(A), qgr(B) have canonical bimodules K_A, K_B . If $(\pi_A(A), K_A), (\pi_B(B), K_B)$ are (anti-)ample, then

$$D^b(\operatorname{qgr}(A)) \simeq D^b(\operatorname{qgr}(B)) \Rightarrow \operatorname{qgr}(A) \simeq \operatorname{qgr}(B).$$

Rmk

- Main theorem ⇒ the original Bondal-Orlov's thm.
- In the prf, showing the two claims are crucial:
 - **1** Equivs between $D^b(qgr(A)) \& D^b(qgr(B))$ is of Fourier-Mukai type.
 - 2 The canonical alg of A

$$\mathcal{C}_A := igoplus_{m \in \mathbb{N}} H^0(\operatorname{\mathsf{qgr}}(A), \mathcal{K}_A^m(\pi_A(A)))$$

is isomorphic to C_B .

AS Regular Algebras

A: a connected (i.e. $A_0 = k$) noeth \mathbb{N} -gr k-alg. $k = A/A_{>0}$ is regarded as an A-mod.

Definition (Artin-Schelter '87)

A is Artin-Schelter (AS) regular if

- **2** A is Gorenstein, i.e. $\operatorname{Ext}_A^i(k,A) \simeq \begin{cases} 0 & (i \neq d) \\ k & (i = d) \end{cases}$

Rmk

• A: commutative AS reg alg $\Leftrightarrow A$: polynomial ring.

Examples of AS regular algebras

Example

- 1-dim AS reg alg $\simeq k[t]$.
- 2-dim AS reg alg $\simeq k\langle x,y\rangle/(xy-qyx)$ or $k\langle x,y\rangle/(xy-yx-y^m)$. $(q\in k^\times, m\in \mathbb{N})$
- $k\langle x_1, \cdots, x_n \rangle / (x_i x_j q_{ij} x_j x_i \mid 1 \leq i, j \leq n), \ (q_{ij} \in k^*, q_{ii} = q_{ij} q_{ji} = 1).$

Example (Sklyanin '83)

Let $a, b, c \in k$.

$$S_{a,b,c} := k\langle x, y, z \rangle / (f_1, f_2, f_3),$$

 $f_1 = ayz + bzy + cx^2, \ f_2 = azx + bxz + cy^2, \ f_3 = axy + bxy + cz^2.$

There are many more (higher-dimensional) examples such as Feigin-Odesskii's elliptic algebras.

An Application of Main Thoeorem

Corollary (M)

Let A, B be AS regular algebras.

Then,

$$D^b(\operatorname{qgr}(A)) \simeq D^b(\operatorname{qgr}(B)) \Rightarrow \operatorname{qgr}(A) \simeq \operatorname{qgr}(B).$$

Rmk

- The cor also holds for locally fin ver of AS regular algs.
- Even when proving the connected case, we need to consider locally fin ver of AS regular algs!
 In detail, the notion of quasi-Veronese algebras is important.

A Question Related to NC CY mfds

• $k[x_0, \dots, x_n]_{(q_{ij})} := k\langle x_1, \dots, x_n \rangle / (x_i x_j - q_{ij} x_j x_i \mid 1 \leq i, j \leq n),$ where $q_{ij} \in k^*, q_{ii} = q_{ij} q_{ji} = 1.$

Theorem (Kanazawa '14, M '24)

- $(d_0, \dots, d_n) \in \mathbb{N}^{n+1}$ s.t. $d_i \mid d_0 + \dots + d_n (=: d)$.
- $A := k[x_0, \dots, x_n]_{(q_{ij})}/(x_0^{d/d_0} + \dots + x_n^{d/d_n})$ with $\deg(x_i) = d_i$.

Assume

Then, qgr(A) is CY, i.e. qgr(A) has a trivial cannonical bimod.

Question

 $A_1, A_2 : \mathbb{N}$ -gr algs which satisfy the assumptions of the above thm.

$$D^b(\operatorname{\mathsf{qgr}}(A_1)) \simeq D^b(\operatorname{\mathsf{qgr}}(A_2)) \Rightarrow \operatorname{\mathsf{qgr}}(A_1) \simeq \operatorname{\mathsf{qgr}}(A_2)$$
?

Theorem (M)

A, B: loc fin noeth \mathbb{N} -gr k-algs w/ balanced dc.

Assume that qgr(A), qgr(B) have can bimods K_A, K_B .

If $(\pi_A(A), K_A), (\pi_B(B), K_B)$ are (anti-)ample, then

$$D^b(\operatorname{qgr}(A)) \simeq D^b(\operatorname{qgr}(B)) \Rightarrow \operatorname{qgr}(A) \simeq \operatorname{qgr}(B).$$

Corollary (M)

A, B: noeth AS regular algs.

Then,

$$D^b(\operatorname{qgr}(A)) \simeq D^b(\operatorname{qgr}(B)) \Rightarrow \operatorname{qgr}(A) \simeq \operatorname{qgr}(B).$$

Thank you for your attention.