

Bondal-Orlov's reconstruction theorem in noncommutative projective geometry

Yuki Mizuno

Waseda University

January, 2026

Plan of this talk

- ① Introduction: reconstruction problems & noncommutative (NC) projective geometry
- ② Main theorem and necessary notions
- ③ An application to the study of Artin-Schelter (AS) regular algebras
- ④ NC projective Calabi–Yau (CY) geometry: a related question and recent progress

In this talk, we work over a field k .

Introduction: reconstruction problems

Question

When can we reconstruct a scheme from
its (derived) category of coherent sheaves ?

Theorem (Gabriel '62)

X, Y : noetherian schs.

Then,

$$\mathrm{Coh}(X) \simeq \mathrm{Coh}(Y) \Rightarrow X \simeq Y.$$

Theorem (Bondal-Orlov '01)

X, Y : smooth proj vars over k .

Assume that the canonical bundles ω_X, ω_Y of X, Y are (anti-)ample.

Then,

$$D^b(\mathrm{Coh}(X)) \simeq D^b(\mathrm{Coh}(Y)) \Rightarrow X \simeq Y.$$

Rmk It suffices to assume that either ω_X or ω_Y is (anti-)ample.

Introduction : motivation for NC proj geometry

- $R = \bigoplus_{i \in \mathbb{N}} R_i$: commutative fin gen \mathbb{N} -gr k -alg w/ $R_0 = k$.
- $\text{gr}(R)$: cat of fin gen \mathbb{Z} -gr R -mods
- $\text{tor}(R)$: full subcat of $\text{gr}(R)$ consisting of torsion mods

Definition

We define the quotient category $\text{qgr}(R) := \text{gr}(R) / \text{tor}(R)$ as follows:

- ▷ $\text{obj}(\text{qgr}(R)) = \text{obj}(\text{gr}(R))$,
- ▷ $\text{Hom}_{\text{qgr}(R)}(\pi_R(M), \pi_R(N)) = \varinjlim_n \text{Hom}_{\text{gr}(R)}(M_{\geq n}, N_{\geq n})$,
where $\pi_R : \text{gr}(R) \rightarrow \text{qgr}(R)$: the projection functor.

Rmk

$\pi_R(M) \simeq \pi_R(N) \iff M_{\geq n} \simeq N_{\geq n}$ for $n \gg 0$.

Introduction : motivation for NC proj geometry

- $R = \bigoplus_{i \in \mathbb{N}} R_i$: commutative fin gen \mathbb{N} -gr k -alg w/ $R_0 = k$.
- $\text{qgr}(R) = \text{gr}(R)/\text{tor}(R)$: quotient cat.

Theorem (Serre '55)

Assume that R is generated by R_1 as a k -alg.

Then,

$$\text{Coh}(\text{Proj}(R)) \simeq \text{qgr}(R).$$

By [Serre '55] + [Gabriel '62], we can think that

$\text{qgr}(R)$ is essential in projective algebraic geometry !

Introduction: NC proj geometry

- $A = \bigoplus_{i \in \mathbb{N}} A_i$: locally finite (i.e. $\dim_k A_i < \infty$ for $\forall i$) noeth \mathbb{N} -gr k -alg.
- $\text{gr}(A)$: cat of fin gen \mathbb{Z} -gr right A -mods.
- $\text{qgr}(A) = \text{gr}(A)/\text{tor}(A)$: quotient cat.

Definition (Artin-Zhang '94)

We call $\text{qgr}(A)$ the **NC projective scheme** associated with A .
We often write \mathcal{O}_A for $\pi_A(A) \in \text{qgr}(A)$.

Theorem (M, rough statement)

Under appropriate conditions,

Bondal-Orlov's reconstruction theorem holds for NC proj schs.

Key notions

Canonical bundles, their (anti-)ampleness and dualizing complexes in NC world.

Canonical bimodules in the theory of abelian categories

\mathcal{C} : k -linear abelian cat, $F : \mathcal{C} \rightarrow \mathcal{C}$: autoequiv.

Definition (Mori-Ueyama '21)

F is a **canonical bimodule** on \mathcal{C} if $\exists n \in \mathbb{Z}$ s.t.

$$F[n] : D^b(\mathcal{C}) \rightarrow D^b(\mathcal{C})$$

is a Serre functor, i.e. $\text{Hom}_{D^b(\mathcal{C})}(M, N) \simeq \text{Hom}_{D^b(\mathcal{C})}(N, F[n](M))^\vee$.

E.g.

ω_X : canonical sheaf of a proj var X .

1. X : smooth $\Rightarrow - \otimes_{\mathcal{O}_X} \omega_X$: can bimod on $\text{Coh}(X)$ & $n = \dim(X)$.
2. X : Calabi-Yau (i.e. smooth & $\omega_X \simeq \mathcal{O}_X$)
 $\Leftrightarrow \text{id}_{\text{Coh}(X)}$ is a can bimod of $\text{Coh}(X)$.

Ampleness in the theory of abelian categories

\mathcal{O} : object in \mathcal{C} , $F : \mathcal{C} \rightarrow \mathcal{C}$: autoequiv.

Definition (Artin-Zhang '94)

A pair (\mathcal{O}, F) is **ample** if

- ① $\forall M \in \mathcal{C}, \exists$ epimor $\varphi : \bigoplus_{i=1}^r F^{-\ell_i}(\mathcal{O}) \twoheadrightarrow M$ ($\ell_1, \dots, \ell_r \in \mathbb{N}$).
- ② \forall epimor $f : M \rightarrow N, \forall m \gg 0,$

$$\begin{array}{ccc} & F^{-m}(\mathcal{O}) & \\ \exists g \swarrow & & \downarrow \forall h \\ M & \xrightarrow{f} & N \end{array} \quad : \text{commutative}$$

A pair (\mathcal{O}, F) is **anti-ample** if (\mathcal{O}, F^{-1}) is ample.

E.g.

L : an invertible sheaf on a proj var X .

- L is ample on $X \Leftrightarrow (\mathcal{O}_X, - \otimes_{\mathcal{O}_X} L)$ is ample.

Dualizing complexes of NC graded algebras

A : locally fin noeth \mathbb{N} -gr k -alg

Definition (Yekutieli '92)

A **dualizing complex (dc)** of A is a cpx $R \in D^b(\text{Gr}(A^{en}))$ s.t.

- ① R has fin inj dim & fin gen cohomology over A & A^{op} ,
- ② The functor

$$\mathbf{R}\text{Hom}_A(-, R) : D^b(\text{gr}(A))^{\text{op}} \rightarrow D^b(\text{gr}(A^{\text{op}}))$$

is an equiv with inverse $\mathbf{R}\text{Hom}_{A^{\text{op}}}(-, R)$.

Moreover, R is **balanced** if $\mathbf{R}\Gamma_{\mathfrak{m}_A}(R) \simeq \mathbf{R}\Gamma_{\mathfrak{m}_{A^{\text{op}}}}(R) \simeq A'$ (graded k -dual).

Rmk

A has a balanced dc & $\text{qgr}(A)$ has a can bimod

$\Rightarrow \pi_A^*(- \otimes_A H^{-(d+1)}(R))$: can bimod of $\text{qgr}(A)$,

where $d = \text{gl.dim}(\text{qgr}(A)) = \sup\{i \in \mathbb{Z} \mid \text{Ext}_{\text{qgr}(A)}^i(-, -) \neq 0\}$.

Main theorem

A, B : locally fin noeth \mathbb{N} -gr k -algs w/ balanced dc R_A, R_B .

Theorem (M)

Assume that $\text{qgr}(A), \text{qgr}(B)$ have canonical bimodules K_A, K_B .
If $(\mathcal{O}_A, K_A), (\mathcal{O}_B, K_B)$ are (anti-)ample, then

$$D^b(\text{qgr}(A)) \simeq D^b(\text{qgr}(B)) \Rightarrow \text{qgr}(A) \simeq \text{qgr}(B).$$

Rmk

- Main theorem + [Serre '55] + [Gabriel '62]
 \Rightarrow the original Bondal-Orlov's thm.
- The proof of the main thm is **different** from the original one.

Reason: It is difficult to deal with **point-like objects** in NC geometry.

Key lemma: Any equiv $F : D^b(\text{qgr}(A)) \rightarrow D^b(\text{qgr}(B))$ is of **FM type**.
 \rightsquigarrow we can compare the **canonical algebras** C_A, C_B of A, B .

AS regular algebras

A : connected (i.e. $A_0 = k$) noeth \mathbb{N} -gr k -alg.

$k = A/A_{>0}$ is regarded as an A -mod.

Definition (Artin-Schelter '87)

A is **Artin-Schelter (AS) regular** if

① $d := \text{gl.dim}(A) < \infty$,

② A is Gorenstein, i.e.

$$\text{Ext}_A^i(k, A) \simeq \begin{cases} 0 & (i \neq d) \\ k(\ell) & (i = d) \end{cases} \quad \text{in } \text{gr}(A) \text{ & } \text{gr}(A^{\text{op}})$$

for some $\ell \in \mathbb{Z}$, called the **Gorenstein parameter** of A .

Rmk

- A : commutative AS reg alg $\Leftrightarrow A$: polynomial ring.

Examples of AS regular algebras

Example

- 1-dim AS reg alg $\simeq k[t]$.
- 2-dim AS reg alg $\simeq \begin{cases} k\langle x, y \rangle / (xy - qyx) & (q \in k^*) \text{ or} \\ k\langle x, y \rangle / (xy - yx - y^m) & (m \in \mathbb{N}) \end{cases}$.
- $k\langle x_1, \dots, x_n \rangle / (x_i x_j - q_{ij} x_j x_i \mid 1 \leq i, j \leq n)$, $(q_{ij} \in k^*, q_{ii} = q_{ij} q_{ji} = 1)$.

Example (Sklyanin '83)

$[a : b : c] \in \mathbb{P}_k^2 \setminus \{\text{finite pts}\}$.

$$S_{a,b,c} := k\langle x, y, z \rangle / (f_1, f_2, f_3),$$

$$f_1 = ayz + bzy + cx^2,$$

$$f_2 = azx + bxz + cy^2,$$

$$f_3 = axy + byx + cz^2.$$

There are much more (higher-dimensional) examples such as Feigin-Odesskii's elliptic algebras.

An application of main theorem

Corollary (M)

Let A, B be AS regular algebras.

Then,

$$D^b(\text{qgr}(A)) \simeq D^b(\text{qgr}(B)) \Rightarrow \text{qgr}(A) \simeq \text{qgr}(B).$$

Rmk

- To prove the corollary,
we need to consider **non-connected** version of AS regular algs !

Reason: The anti-ampleness of the can bimod is NOT obvious.

Key notion: ℓ -th quasi-Veronese algebra $A^{[\ell]}$ of A

$$A^{[\ell]} := \bigoplus_{i \in \mathbb{N}} \begin{pmatrix} A_{\ell i} & A_{\ell i+1} & \cdots & A_{\ell i+\ell-1} \\ A_{\ell i-1} & A_{\ell i} & \cdots & A_{\ell i+\ell-2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{\ell i-\ell+1} & A_{\ell i-\ell+2} & \cdots & A_{\ell i} \end{pmatrix}.$$

↔ We have the equiv $\text{qgr}(A) \simeq \text{qgr}(A^{[\ell]})$.

It's **easy** to show the can bimod of $\text{qgr}(A^{[\ell]})$ is anti-ample.

A question related to NC CY manifolds

Definition

$\mathbf{q} = (q_{ij})_{0 \leq i,j \leq n}$: matrix over k^* with $q_{ii} = q_{ij}q_{ji} = 1$ for $\forall i, j$.

$\mathbf{d} = (d_0, \dots, d_n) \in \mathbb{N}^{n+1}$ satisfying $d_i \mid d_0 + \dots + d_n$ ($=: d$) for $\forall i$.

$k[x_0, \dots, x_n]_{\mathbf{q}, \mathbf{d}} := k\langle x_0, \dots, x_n \rangle / (x_i x_j - q_{ij} x_j x_i \mid 0 \leq i, j \leq n)$,

with $\deg x_i = d_i$ for $\forall i$.

Theorem (Kanazawa '14, M '24)

Let $A_{\mathbf{q}, \mathbf{d}} := k[x_0, \dots, x_n]_{\mathbf{q}, \mathbf{d}} / (x_0^{d/d_0} + \dots + x_n^{d/d_n})$.

Assume

① $q_{ij}^{d/d_i} = q_{ij}^{d/d_j} = 1$ for $\forall i, j$.

② $\exists c \in k^*$ s.t. $c^{d_j} = \prod_{i=0}^n q_{ij}$ for $\forall j$.

Then, $\text{qgr}(A_{\mathbf{q}, \mathbf{d}})$ is **CY**, i.e. $\text{qgr}(A_{\mathbf{q}, \mathbf{d}})$ has a trivial canonical bimod.

A question related to NC CY manifolds

- $k[x_0, \dots, x_n]_{\mathbf{q}, \mathbf{d}} := k\langle x_0, \dots, x_n \rangle / (x_i x_j - q_{ij} x_j x_i \mid 0 \leq i, j \leq n),$
with $\deg x_i = d_i$ for $\forall i$.

Theorem (Kanazawa '14, M '24)

Let $A_{\mathbf{q}, \mathbf{d}} := k[x_0, \dots, x_n]_{\mathbf{q}, \mathbf{d}} / (x_0^{d/d_0} + \dots + x_n^{d/d_n})$.

Assume

① $q_{ij}^{d/d_i} = q_{ij}^{d/d_j} = 1$ for $\forall i, j$.

② $\exists c \in k^*$ s.t. $c^{d_j} = \prod_{i=0}^n q_{ij}$ for $\forall j$.

Then, $\text{qgr}(A_{\mathbf{q}, \mathbf{d}})$ is **CY**, i.e. $\text{qgr}(A_{\mathbf{q}, \mathbf{d}})$ has a trivial canonical bimod.

Question 1

$A_{\mathbf{q}_1, \mathbf{d}_1}, A_{\mathbf{q}_2, \mathbf{d}_2}$: \mathbb{N} -gr algs which satisfy the assumptions of the above thm.

$$D^b(\text{qgr}(A_{\mathbf{q}_1, \mathbf{d}_1})) \simeq D^b(\text{qgr}(A_{\mathbf{q}_2, \mathbf{d}_2})) \Rightarrow \text{qgr}(A_{\mathbf{q}_1, \mathbf{d}_1}) \simeq \text{qgr}(A_{\mathbf{q}_2, \mathbf{d}_2}) ?$$

Updates of study on geometry of NC CY manifolds

We focus on the **2-dim** case of the above construction.

Theorem (M. j.w.w. P. Belmans & O. van Garderen)

$A_{\mathbf{q}, \mathbf{d}}$: as in the thm w/ $\text{gl.dim}(\text{qgr}(A_{\mathbf{q}, \mathbf{d}})) = 2$.

Then, $\text{qgr}(A_{\mathbf{q}, \mathbf{d}})$ is a **twisted NCCR** (in the sense of M. Van den Bergh) over a **singular K3 surface** X only with ADE singularities.

E.g. When $\mathbf{q} = (q_{ij})$ and \mathbf{d} are given by

$$q_{ij} = \begin{cases} 1 & (i = j) \\ -1 & (i \neq j) \end{cases}, \quad \mathbf{d} = (1, 1, 1, 1),$$

then, $X \cong \text{Proj}(k[x_0, x_1, x_2, x_3, y]/(x_0^2 + x_1^2 + x_2^2 + x_3^2, x_0x_1x_2x_3 - y^2))$.

In addition, $\exists \mathcal{A}$: a coh sheaf of algebras on X s.t.

$$\text{qgr}(A_{\mathbf{q}, \mathbf{d}}) \simeq \text{Coh}(X, \mathcal{A})$$

and \mathcal{A} is Azumaya except for the singular points of X .

Updates of study on geometry of NC CY manifolds

Corollary (M. j.w.w. P. Belmans & O. van Garderen)

$A_{\mathbf{q},\mathbf{d}}$: as in the thm w/ $\text{gldim}(\text{qgr}(A_{\mathbf{q},\mathbf{d}})) = 2$.

X_{can} : the canonical stack of X .

- ① There is an Azumaya algebra \mathcal{A}_{can} over X_{can} s.t.

$$\text{qgr}(A_{\mathbf{q},\mathbf{d}}) \simeq \text{Coh}(X_{\text{can}}, \mathcal{A}_{\text{can}}).$$

- ② We have the isomorphism of Hochschild homology:

$$\text{HH}_\bullet(D^b(\text{qgr}(A_{\mathbf{q},\mathbf{d}}))) \simeq \text{HH}_\bullet(\text{K3 surfaces}).$$

Conjecture (Bondal-Orlov '02, Van den Bergh '04)

Any CRs and (untwisted) NCCRs are derived equivalent.

Question 2

Are $\text{qgr}(A_{\mathbf{q},\mathbf{d}})$ derived equivalent to a twisted K3 surface ?

Thank you for your attention.

Theorem (M)

A, B : locally fin noeth \mathbb{N} -gr k -algs w/ balanced dc.

Assume that $\text{qgr}(A), \text{qgr}(B)$ have can bimods K_A, K_B .

If $(\mathcal{O}_A, K_A), (\mathcal{O}_B, K_B)$ are (anti-)ample, then

$$D^b(\text{qgr}(A)) \simeq D^b(\text{qgr}(B)) \Rightarrow \text{qgr}(A) \simeq \text{qgr}(B).$$

Corollary (M)

A, B : noeth AS regular algs.

Then,

$$D^b(\text{qgr}(A)) \simeq D^b(\text{qgr}(B)) \Rightarrow \text{qgr}(A) \simeq \text{qgr}(B).$$