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Introduction: Reconstruction Problems
k : alg clo field.

Question
When can we renconstruct a scheme from
its (derived) category of coherent sheaves ?

Theorem (Gabriel '62)

X, Y : noeth schs.
Then,
Coh(X) ~ Coh(Y) = X ~ Y.

Theorem (Bondal-Orlov '01)

X,Y : sm proj vars over k.
Assume that the canonical bundles of X, Y are (anti-)ample.
Then,

DP(Coh(X)) ~ D®(Coh(Y)) = X ~ Y.
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Introduction: Motivation of NC Proj Geometry

®* R=@&,cyRi : commutative fin gen N-gr k-alg.
® gr(R) : cat of fin gen Z-gr R-mods.
® qgr(R) : quotient cat of gr(R) by tor(R).
— obj(qgr(R)) = obj(gr(R)).
— Homyg(r)(7r(M), mr(N)) = lim Homg(r) (M1, N>p),

where 7g : gr(R) — qgr(R) is the projection.

Theorem (Serre '55)

Assume that R is generated by Rj as an Ryp-alg.
Then,
Coh(Proj(R)) ~ qgr(R).

qgr(R) is essential in projective algebraic geometry !
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Introduction: NC Proj Schemes & Main Thm (Rough)

A= @iy Ai : locally finite (i.e. dimy A; < c0) noeth N-gr k-alg.
Definition (Artin-Zhang '94)

qgr(A) is the noncommutative projective (NC) scheme associated with A.

Theorem (M, rough version)

Under appropriate conditions,
Bondal-Orlov’s reconstruction theorem holds for NC proj schs.

Key notions:
® canonical bundles of NC proj schs,

® (anti-)ampleness of canonical bundles of NC proj schs,
® dualizing complexes of NC graded algs.
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Canonical Bimodules on Abelian Categories

C : k-linear abelian cat, F :C — C : autoequiv.
Definition (Mori-Ueyama '21)
F is a canonical bimodule on C if ?n € Z s.t.
F[n] : D*(C) — D"(C)
is a Serre functor, i.e. Homps(cy(M, N) =~ Homps(c) (N, F[n](M))".

Eg
wx : can bdl of a sm proj var X.
Then, — ®p, wx is a can bimod on Coh(X) and n = dim(X).

Remark
® A proj var X is sm < Coh(X) has a can bimod.
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Ampleness in the Theory of Abelian Categories
O :objinC, F:C — C: autoequiv.
Definition (Artin-Zhang '94)
A pair (O, F) is ample if
® "M cC, 7 an epimor ¢

p: @PFO) M (t,-- L €N).
i=1
@® " epimor f : M — N, ?mg € N s.t. the natural mor

Hom¢(F~"(O), M) — Hom¢(F~"(O), N).
is surj for Ym > mo.
A pair (O, F) is anti-ample if (O, F~1) is ample.
Eg.
L : aline bdl on a sm proj var X.
Then, L is ample on X < (Ox, — ®o, L) is ample.
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Dualizing Complexes of NC Graded Algebras

Definition (Yekutieli '92)

A dualizing complex (dc) of A is a cpx R € DP(Gr(A®")) s.t.
@ R has fin inj dim & fin gen cohomology over A & A°P,
® The functor

R Homa(—, R) : D®(gr(A)) — D®(gr(A°P))
is an equiv with inverse R Hom aor (—, R).
Moreover, R is balanced if Ry, (R) >~ Ry 0, (R) >~ A’ (graded k-dual).

Remark

® A has a balanced dc & qgr(A) has a can bimod
= 7a(— @4 H-("D(R)) : can bimod of qgr(A).
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Main Theorem
A, B : loc fin noeth N-gr k-algs w/ balanced dc Ra, Rp.
Theorem (M)

Assume that qgr(A), qgr(B) have canonical bimodules Ka, K5.
If (ma(A), Ka), (m8(B), Kg) are (anti-)ample, then

D"(agr(A)) ~ D°(agr(B)) = agr(A) =~ qgr(B).

Remark
® Main theorem = the original Bondal-Orlov reconstruction.
® |n the prf, showing the following two claims are crucial.

@ Equivs between D®(qgr(A)) & D?(qgr(B)) are of Fourier-Mukai type.
@® The canonical alg of A

Ca = @D H(agr(A), K& (ma(A)))
meN
is isomorphic to Cg.
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AS Regular Algebras

A : connected (i.e. Ap = k) fin gen N-gr k-alg.

k = A/Aso is regarded as an A-mod.

Definition (Artin-Schelter '87)

A is Artin-Schelter (AS) regular of dim d & Gorenstein para ¢ if
® gldim(A) =d < o0,
® {dimy A;}ien has poly growth.

. 0 £ d
© A is Gorenstein, i.e. Extiy(k, A) ~ { (i#d)

E.g.
® commutative AS reg alg ~ polynomial alg.
e 1-dim AS reg alg >~ k[t].
e 2-dim AS reg alg ~ k{(x,y)/(xy — qyx) or k(x,y)/(xy —yx —y™).
(g € k*,meN)
® k(xy,- ’Xn>/(Xin_qu'XJ'X" |1<4,j<n), (qij € k*, gii = q;qji = 1).
8/12




More Examples of AS Regular Algebras
Sab,c & Qnk(E,n) are AS regular for gen a, b, c and 7.
Example (Sklyanin '83)
Let a, b, c € k.
5z),b,c = k<X7)/a Z>/(f1, f27 f3)a
fi = ayz + bzy + cx?, f = azx + bxz + cy?, f3 = axy + bxy + cz°.

Example (Feigin-Odesskii '89, Chirvasitu-Kanda-Smith '23)

E : elliptic curve, n € E : closed pt.
1 < k < n: coprime integers.

Qn,k(Eﬂ?) = k<X17 e 7X”>/(gi,j | Iﬂ.] € Z/HZ)7
3 0;_i+(k-1)r(0)

Xj—rXi+tr,
(=)0 () 7"

8ij = 0. .
j—i—r
reZ/nZ

where 0, (a € Z/nZ) are certain theta functions.
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An Application of Main Thoeorem

Corollary (M)

Let A, B be noetherian AS regular algebras.
Then,

D"(qgr(A)) ~ D"(agr(B)) = agr(A) =~ qgr(B).

Remark
® The cor holds for locally fin ver of AS regular algs.

® Even when proving the connected case,
we need to consider locally fin ver of AS regular algs !
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The Proof of Corollary

la,Lp . Gorenstein paras of A, B.
@ Taking a quasi-Veronese algebra Aléal,

A, Agpiv s Aggirea—1
Al = (A = P At A Anista
= i = .
ieN ieN :
Aggicear1  Argictgr2 - Agyi

@® We have the equiv qgr(A) ~ qgr(Al]).
® (i, = 1 (Mori-Minamoto) ~~ (WA[AA](AV’A]), K piea1) : anti-ample,
@ We can apply the thm to qgr(AVA]) & qgr(B[fB])_

Remark
o All4l is a locally fin ver of AS regular algs.

e Anti-ampleness of K, is NOT obvious without considering AlAl.
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Theorem (M)

A, B : loc fin noeth N-gr k-algs w/ balanced dc.
Assume that qgr(A), qgr(B) have can bimods Ka, Kp.

If (ma(A), Ka),(mg(B), Kg) are (anti-)ample, then
D"(qgr(A)) ~ D"(qgr(B)) = qgr(A) ~ qgr(B).
Corollary (M)

A, B : noeth AS regular algs.
Then,

D"(agr(A)) ~ D°(agr(B)) = agr(A) =~ qgr(B).

Thank you for your attention.
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The Core Idea of the Proof of Main Theorem

F: Db(qgr(A)) — Db(qgr(B)) © equiv.
Assume that (ma(A), Ka), (s(B), Kg) are ample.

@ F is of Fourier-Mukai type, i.e. F € D(qbigr(A°® @4 B)) s.t.
F(-) = ®7(~) := mg(Rwa(—) @4 Rwaws,8(F)).
® We have an iso of the graded k-algs
Ca =P H%(agr(A), KX (7a(A)))

meN

~EP H(agr(B), KB (v5(B))) =: Ca.
meN

© Finally, we have
qgr(A) ~ qgr(Ca) ~ qgr(Cp) ~ qgr(B)
by the ampleness of K4, Kg and Artin-Zhang's theorem.
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