Bondal-Orlov's reconstruction theorem in noncommutative projective geometry (arXiv:2411.07813)

Yuki Mizuno

Waseda University

March 4, 2025
The 21st Mathematics Conference for Young Researchers

Introduction: Reconstruction Problems

k: alg clo field.

Question

When can we renconstruct a scheme from its (derived) category of coherent sheaves ?

Theorem (Gabriel '62)

X, Y: noeth schs.

Then,

$$Coh(X) \simeq Coh(Y) \Rightarrow X \simeq Y.$$

Theorem (Bondal-Orlov '01)

X, Y: sm proj vars over k.

Assume that the canonical bundles of X, Y are (anti-)ample.

Then,

$$D^b(\mathsf{Coh}(X)) \simeq D^b(\mathsf{Coh}(Y)) \Rightarrow X \simeq Y.$$

Introduction: Motivation of NC Proj Geometry

- $R = \bigoplus_{i \in \mathbb{N}} R_i$: commutative fin gen \mathbb{N} -gr k-alg.
- gr(R): cat of fin gen \mathbb{Z} -gr R-mods.
- qgr(R): quotient cat of gr(R) by tor(R).
 - $\operatorname{obj}(\operatorname{qgr}(R)) = \operatorname{obj}(\operatorname{gr}(R)).$
 - $\operatorname{Hom}_{\operatorname{qgr}(R)}(\pi_R(M), \pi_R(N)) = \varinjlim_n \operatorname{Hom}_{\operatorname{gr}(R)}(M_{\geq n}, N_{\geq n}),$ where $\pi_R : \operatorname{gr}(R) \to \operatorname{qgr}(R)$ is the projection.

Theorem (Serre '55)

Assume that R is generated by R_1 as an R_0 -alg. Then,

$$Coh(Proj(R)) \simeq qgr(R)$$
.

qgr(R) is essential in projective algebraic geometry!

Introduction: NC Proj Schemes & Main Thm (Rough)

 $A := \bigoplus_{i \in \mathbb{N}} A_i$: locally finite (i.e. $\dim_k A_i < \infty$) noeth \mathbb{N} -gr k-alg.

Definition (Artin-Zhang '94)

qgr(A) is the noncommutative projective (NC) scheme associated with A.

Theorem (M, rough version)

Under appropriate conditions,

Bondal-Orlov's reconstruction theorem holds for NC proj schs.

Key notions:

- canonical bundles of NC proj schs,
- (anti-)ampleness of canonical bundles of NC proj schs,
- dualizing complexes of NC graded algs.

Canonical Bimodules on Abelian Categories

 \mathcal{C} : k-linear abelian cat, $F:\mathcal{C}\to\mathcal{C}$: autoequiv.

Definition (Mori-Ueyama '21)

F is a canonical bimodule on C if $\exists n \in \mathbb{Z}$ s.t.

$$F[n]: D^b(\mathcal{C}) \to D^b(\mathcal{C})$$

is a Serre functor, i.e. $\operatorname{\mathsf{Hom}}_{D^b(\mathcal{C})}(M,N) \simeq \operatorname{\mathsf{Hom}}_{D^b(\mathcal{C})}(N,F[n](M))^\vee$.

E.g.

 ω_X : can bdl of a sm proj var X.

Then, $- \otimes_{\mathcal{O}_X} \omega_X$ is a can bimod on Coh(X) and n = dim(X).

Remark

• A proj var X is sm \Leftrightarrow Coh(X) has a can bimod.

Ampleness in the Theory of Abelian Categories

 \mathcal{O} : obj in \mathcal{C} , $F:\mathcal{C}\to\mathcal{C}$: autoequiv.

Definition (Artin-Zhang '94)

A pair (\mathcal{O}, F) is ample if

1 $\forall M \in \mathcal{C}$, ∃ an epimor φ

$$\varphi: \bigoplus_{i=1}^r F^{-\ell_i}(\mathcal{O}) \to M \quad (\ell_1, \cdots, \ell_r \in \mathbb{N}).$$

 $oldsymbol{2}$ \forall epimor $f:M \to N$, $\exists m_0 \in \mathbb{N}$ s.t. the natural mor

$$\operatorname{\mathsf{Hom}}_{\mathcal{C}}(F^{-m}(\mathcal{O}),M) o \operatorname{\mathsf{Hom}}_{\mathcal{C}}(F^{-m}(\mathcal{O}),N).$$

is surj for $\forall m \geq m_0$.

A pair (\mathcal{O}, F) is anti-ample if (\mathcal{O}, F^{-1}) is ample.

E.g.

 \overline{L} : a line bdl on a sm proj var X.

Then, L is ample on $X \Leftrightarrow (\mathcal{O}_X, -\otimes_{\mathcal{O}_X} L)$ is ample.

Dualizing Complexes of NC Graded Algebras

Definition (Yekutieli '92)

A dualizing complex (dc) of A is a cpx $R \in D^b(Gr(A^{en}))$ s.t.

- **1** R has fin inj dim & fin gen cohomology over $A \& A^{op}$,
- 2 The functor

$$\mathbf{R}\operatorname{\mathsf{Hom}}_{A}(-,R):D^{b}(\operatorname{\mathsf{gr}}(A))\to D^{b}(\operatorname{\mathsf{gr}}(A^{\operatorname{\mathsf{op}}}))$$

is an equiv with inverse $\mathbf{R} \operatorname{Hom}_{A^{\operatorname{op}}}(-,R)$.

Moreover, R is balanced if $\mathbf{R}\Gamma_{\mathfrak{m}_A}(R) \simeq \mathbf{R}\Gamma_{\mathfrak{m}_{A^{op}}}(R) \simeq A'$ (graded k-dual).

Remark

• A has a balanced dc & qgr(A) has a can bimod $\Rightarrow \pi_A(-\otimes_A H^{-(n+1)}(R))$: can bimod of qgr(A).

Main Theorem

A, B: loc fin noeth \mathbb{N} -gr k-algs w/ balanced dc R_A, R_B .

Theorem (M)

Assume that qgr(A), qgr(B) have canonical bimodules K_A, K_B . If $(\pi_A(A), K_A), (\pi_B(B), K_B)$ are (anti-)ample, then

$$D^b(\operatorname{qgr}(A)) \simeq D^b(\operatorname{qgr}(B)) \Rightarrow \operatorname{qgr}(A) \simeq \operatorname{qgr}(B).$$

Remark

- Main theorem \Rightarrow the original Bondal-Orlov reconstruction.
- In the prf, showing the following two claims are crucial.
 - **1** Equivs between $D^b(qgr(A)) \& D^b(qgr(B))$ are of Fourier-Mukai type.
 - 2 The canonical alg of A

$$C_A := \bigoplus_{m \in \mathbb{N}} H^0(\operatorname{\mathsf{qgr}}(A), K_A^m(\pi_A(A)))$$

is isomorphic to C_B .

AS Regular Algebras

A: connected (i.e. $A_0 = k$) fin gen \mathbb{N} -gr k-alg. $k = A/A_{>0}$ is regarded as an A-mod.

Definition (Artin-Schelter '87)

A is Artin-Schelter (AS) regular of dim d & Gorenstein para ℓ if

- **2** $\{\dim_k A_i\}_{i\in\mathbb{N}}$ has poly growth.
- **3** A is Gorenstein, i.e. $\operatorname{Ext}_A^i(k,A) \simeq \begin{cases} 0 & (i \neq d) \\ k(\ell) & (i = d) \end{cases}$.

E.g.

- commutative AS reg alg \simeq polynomial alg.
- 1-dim AS reg alg $\simeq k[t]$.
- 2-dim AS reg alg $\simeq k\langle x,y\rangle/(xy-qyx)$ or $k\langle x,y\rangle/(xy-yx-y^m)$. $(g\in k^\times, m\in \mathbb{N})$
- $k\langle x_1, \dots, x_n \rangle / (x_i x_j q_{ij} x_j x_i \mid 1 \leq i, j \leq n), \ (q_{ij} \in k^*, q_{ii} = q_{ij} q_{ji} = 1).$

More Examples of AS Regular Algebras

 $S_{a,b,c} \& Q_{n,k}(E,\eta)$ are AS regular for gen a,b,c and η .

Example (Sklyanin '83)

Let $a, b, c \in k$.

$$S_{a,b,c} := k\langle x, y, z \rangle / (f_1, f_2, f_3),$$

 $f_1 = ayz + bzy + cx^2, \ f_2 = azx + bxz + cy^2, \ f_3 = axy + bxy + cz^2.$

Example (Feigin-Odesskii '89, Chirvasitu-Kanda-Smith '23)

E: elliptic curve, $\eta \in E$: closed pt.

 $1 \le k < n$: coprime integers.

$$Q_{n,k}(E,\eta) := k\langle x_1, \cdots, x_n \rangle / (g_{i,j} \mid i,j \in \mathbb{Z}/n\mathbb{Z}),$$

$$g_{i,j} := \sum_{r \in \mathbb{Z}/n\mathbb{Z}} \frac{\theta_{j-i+(k-1)r}(0)}{\theta_{j-i-r}(-\eta)\theta_{kr}(\eta)} x_{j-r} x_{i+r},$$

where θ_{α} ($\alpha \in \mathbb{Z}/n\mathbb{Z}$) are certain theta functions.

An Application of Main Thoeorem

Corollary (M)

Let A, B be noetherian AS regular algebras.

Then,

$$D^b(\operatorname{qgr}(A)) \simeq D^b(\operatorname{qgr}(B)) \Rightarrow \operatorname{qgr}(A) \simeq \operatorname{qgr}(B).$$

Remark

- The cor holds for locally fin ver of AS regular algs.
- Even when proving the connected case, we need to consider locally fin ver of AS regular algs!

The Proof of Corollary

- ℓ_A, ℓ_B : Gorenstein paras of A, B.
 - 1 Taking a quasi-Veronese algebra $A^{[\ell_A]}$.

$$A^{[\ell_A]} := \bigoplus_{i \in \mathbb{N}} A_i^{[\ell_A]} := \bigoplus_{i \in \mathbb{N}} \begin{pmatrix} A_{\ell_A i} & A_{\ell_A i+1} & \cdots & A_{\ell_A i+\ell_A-1} \\ A_{\ell_A i-1} & A_{\ell_A i} & \cdots & A_{\ell_A i+\ell_A-2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{\ell_A i-\ell_A+1} & A_{\ell_A i-\ell_A+2} & \cdots & A_{\ell_A i} \end{pmatrix}.$$

- ② We have the equiv $\operatorname{\mathsf{qgr}}(A) \simeq \operatorname{\mathsf{qgr}}(A^{[\ell_1]})$.
- 4 We can apply the thm to $\operatorname{\mathsf{qgr}}(A^{[\ell_A]})$ & $\operatorname{\mathsf{qgr}}(B^{[\ell_B]})$.

Remark

- $A^{[\ell_A]}$ is a locally fin ver of AS regular algs.
- Anti-ampleness of K_A is NOT obvious without considering $A^{[\ell_A]}$.

Theorem (M)

A, B: loc fin noeth \mathbb{N} -gr k-algs w/ balanced dc.

Assume that qgr(A), qgr(B) have can bimods K_A, K_B .

If $(\pi_A(A), K_A), (\pi_B(B), K_B)$ are (anti-)ample, then

$$D^b(\operatorname{qgr}(A)) \simeq D^b(\operatorname{qgr}(B)) \Rightarrow \operatorname{qgr}(A) \simeq \operatorname{qgr}(B).$$

Corollary (M)

A, B: noeth AS regular algs.

Then,

$$D^b(\operatorname{qgr}(A)) \simeq D^b(\operatorname{qgr}(B)) \Rightarrow \operatorname{qgr}(A) \simeq \operatorname{qgr}(B).$$

Thank you for your attention.

The Core Idea of the Proof of Main Theorem

 $F: D^b(\operatorname{qgr}(A)) \to D^b(\operatorname{qgr}(B)): \operatorname{equiv}.$ Assume that $(\pi_A(A), K_A), (\pi_B(B), K_B)$ are ample.

1 F is of Fourier-Mukai type, i.e. $^{\exists}\mathcal{F} \in D(\operatorname{qbigr}(A^{\operatorname{op}} \otimes_k B))$ s.t.

$$F(-) \simeq \Phi_{\mathcal{F}}(-) := \pi_B(\mathbf{R}\omega_A(-) \otimes_{\mathcal{A}}^{\mathbb{L}} \mathbf{R}\omega_{A^{\mathrm{op}} \otimes_k B}(\mathcal{F})).$$

2 We have an iso of the graded k-algs

$$C_A := \bigoplus_{m \in \mathbb{N}} H^0(\operatorname{qgr}(A), K_A^m(\pi_A(A)))$$

 $\simeq \bigoplus_{m \in \mathbb{N}} H^0(\operatorname{qgr}(B), K_B^m(\pi_B(B))) =: C_B.$

3 Finally, we have

$$\operatorname{\mathsf{qgr}}(A) \simeq \operatorname{\mathsf{qgr}}(C_A) \simeq \operatorname{\mathsf{qgr}}(C_B) \simeq \operatorname{\mathsf{qgr}}(B)$$

by the ampleness of K_A , K_B and Artin-Zhang's theorem.